1. Feng X, Goodley P, Alcala K, Guida F, Kaaks R, Vermeulen R, et al. (2024). Evaluation of risk prediction models to select lung cancer screening participants in Europe: a prospective cohort consortium analysis. Lancet Digit Health. 6(9):e614–e624. https://doi.org/10.1016/S2589-7500(24)00123-7 PMID:39179310
2. Onwuka JU, Guida F, Langdon R, Johansson M, Severi G, Milne RL, et al. (2024). Blood-based DNA methylation markers for lung cancer prediction. BMJ Oncol. 3:e000334. https://doi.org/10.1136/bmjonc-2024-000334
3. Yang JJ, Wen W, Zahed H, Zheng W, Lan Q, Abe SK, et al. (2024). Lung cancer risk prediction models for Asian ever-smokers. J Thorac Oncol. 19(3):451–64. https://doi.org/10.1016/j.jtho.2023.11.002 PMID:37944700
4. Lam S, Bai C, Baldwin DR, Chen Y, Connolly C, de Koning H, et al. (2024). Current and future perspectives on computed tomography screening for lung cancer: a roadmap from 2023 to 2027 from the International Association for the Study of Lung Cancer. J Thorac Oncol. 19(1):36–51. https://doi.org/10.1016/j.jtho.2023.07.019 PMID:37487906
5. Wu WY, Haider Z, Feng X, Heath AK, Tjønneland A, Agudo A, et al. (2023). Assessment of the EarlyCDT-Lung test as an early biomarker of lung cancer in ever-smokers: a retrospective nested case-control study in two prospective cohorts. Int J Cancer. 152(9):2002–10. https://doi.org/10.1002/ijc.34340 PMID:36305647
6. Robbins HA, Alcala K, Moez EK, Guida F, Thomas S, Zahed H, et al. (2023). Design and methodological considerations for biomarker discovery and validation in the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Program. Ann Epidemiol. 77:1–12. https://doi.org/10.1016/j.annepidem.2022.10.014 PMID:36404465
7. Midttun Ø, Ulvik A, Meyer K, Zahed H, Giles GG, Manjer J, et al. (2023). A cross-sectional study of inflammatory markers as determinants of circulating kynurenines in the Lung Cancer Cohort Consortium. Sci Rep. 13(1):1011. https://doi.org/10.1038/s41598-023-28135-9 PMID:36653422
8. Albanes D, Alcala K, Alcala N, Amos CI, Arslan AA, Bassett JK, et al.; Lung Cancer Cohort Consortium (LC3) (2023). The blood proteome of imminent lung cancer diagnosis. Nat Commun. 14(1):3042. https://doi.org/10.1038/s41467-023-37979-8 PMID:37264016
9. Feng X, Wu WY, Onwuka JU, Haider Z, Alcala K, Smith-Byrne K, et al. (2023). Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools. J Natl Cancer Inst. 115(9):1050–9. https://doi.org/10.1093/jnci/djad071 PMID:37260165
10. Feng X, Muller DC, Zahed H, Alcala K, Guida F, Smith-Byrne K, et al. (2023). Evaluation of pre-diagnostic blood protein measurements for predicting survival after lung cancer diagnosis. EBioMedicine. 92:104623. https://doi.org/10.1016/j.ebiom.2023.104623 PMID:37236058
11. Smith-Byrne K, Cerani A, Guida F, Zhou S, Agudo A, Aleksandrova K, et al. (2022). Circulating isovalerylcarnitine and lung cancer risk: evidence from Mendelian randomization and prediagnostic blood measurements. Cancer Epidemiol Biomarkers Prev. 31(10):1966–74. https://doi.org/10.1158/1055-9965.EPI-21-1033 PMID:35839461
12. Zahed H, Johansson M, Ueland PM, Midttun Ø, Milne RL, Giles GG, et al. (2021). Epidemiology of 40 blood biomarkers of one-carbon metabolism, vitamin status, inflammation, and renal and endothelial function among cancer-free older adults. Sci Rep. 11(1):13805. https://doi.org/10.1038/s41598-021-93214-8 PMID:34226613
13. Smith-Byrne K, Chen Y, Kachuri L, Kapoor PM, Guida F, Zahed H, et al. (2021). IL-18 and lower risk for lung cancer: triangulated evidence from germline predictions, pre-diagnostic measurements, and tumor expression. medRxiv. https://doi.org/10.1101/2021.03.26.21254400
14. Robbins HA, Alcala K, Swerdlow AJ, Schoemaker MJ, Wareham N, Travis RC, et al. (2021). Comparative performance of lung cancer risk models to define lung screening eligibility in the United Kingdom. Br J Cancer. 124(12):2026–34. https://doi.org/10.1038/s41416-021-01278-0 PMID:33846525
15. Larose TL, Meheus F, Brennan P, Johansson M, Robbins HA (2020). Assessment of biomarker testing for lung cancer screening eligibility. JAMA Netw Open. 3(3):e200409. https://doi.org/10.1001/jamanetworkopen.2020.0409 PMID:32134462
16. Huang JY, Larose TL, Luu HN, Wang R, Fanidi A, Alcala K, et al. (2020). Circulating markers of cellular immune activation in prediagnostic blood sample and lung cancer risk in the Lung Cancer Cohort Consortium (LC3). Int J Cancer. 146(9):2394–405. https://doi.org/10.1002/ijc.32555 PMID:31276202
17. Zuo H, Ueland PM, Midttun Ø, Tell GS, Fanidi A, Zheng W, et al. (2019). Vitamin B6 catabolism and lung cancer risk: results from the Lung Cancer Cohort Consortium (LC3). Ann Oncol. 30(3):478–85. https://doi.org/10.1093/annonc/mdz002 PMID:30698666
18. Muller DC, Larose TL, Hodge A, Guida F, Langhammer A, Grankvist K, et al. (2019). Circulating high sensitivity C reactive protein concentrations and risk of lung cancer: nested case-control study within Lung Cancer Cohort Consortium. BMJ. 364:k4981. https://doi.org/10.1136/bmj.k4981 PMID:30606716
19. Fanidi A, Carreras-Torres R, Larose TL, Yuan JM, Stevens VL, Weinstein SJ, et al.; LC3 consortium and the TRICL consortium (2019). Is high vitamin B12 status a cause of lung cancer? Int J Cancer. 145(6):1499–503. https://doi.org/10.1002/ijc.32033 PMID:30499135
20. Theofylaktopoulou D, Midttun Ø, Ueland PM, Meyer K, Fanidi A, Zheng W, et al. (2018). Impaired functional vitamin B6 status is associated with increased risk of lung cancer. Int J Cancer. 142(12):2425–34. https://doi.org/10.1002/ijc.31215 PMID:29238985
21. Muller DC, Hodge AM, Fanidi A, Albanes D, Mai XM, Shu XO, et al. (2018). No association between circulating concentrations of vitamin D and risk of lung cancer: an analysis in 20 prospective studies in the Lung Cancer Cohort Consortium (LC3). Ann Oncol. 29(6):1468–75. https://doi.org/10.1093/annonc/mdy104 PMID:29617726
22. Larose TL, Guida F, Fanidi A, Langhammer A, Kveem K, Stevens VL, et al. (2018). Circulating cotinine concentrations and lung cancer risk in the Lung Cancer Cohort Consortium (LC3). Int J Epidemiol. 47(6):1760–71. https://doi.org/10.1093/ije/dyy100 PMID:29901778
23. Guida F, Sun N, Bantis LE, Muller DC, Li P, Taguchi A, et al.; Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Consortium for Early Detection of Lung Cancer (2018). Assessment of lung cancer risk on the basis of a biomarker panel of circulating proteins. JAMA Oncol. 4(10):e182078. https://doi.org/10.1001/jamaoncol.2018.2078 PMID:30003238
24. Fanidi A, Muller DC, Yuan JM, Stevens VL, Weinstein SJ, Albanes D, et al. (2018). Circulating folate, vitamin B6, and methionine in relation to lung cancer risk in the Lung Cancer Cohort Consortium (LC3). J Natl Cancer Inst. 110(1):57–67. https://doi.org/10.1093/jnci/djx119 PMID:28922778
25. Midttun Ø, Theofylaktopoulou D, McCann A, Fanidi A, Muller DC, Meyer K, et al. (2017). Circulating concentrations of biomarkers and metabolites related to vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations. Am J Clin Nutr. 105(6):1314–26. https://doi.org/10.3945/ajcn.116.151241 PMID:28424186
26. Midttun O, Townsend MK, Nygård O, Tworoger SS, Brennan P, Johansson M, et al. (2014). Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr. 144(5):784–90. https://doi.org/10.3945/jn.113.189738 PMID:24647388
27. Johansson M, Relton C, Ueland PM, Vollset SE, Midttun Ø, Nygård O, et al. (2010). Serum B vitamin levels and risk of lung cancer. JAMA. 303(23):2377–85. https://doi.org/10.1001/jama.2010.808 PMID:20551408